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A C C E L E R A T I O N  O F  B O D I E S  IN C O M B U S T I B L E  M I X T U R E S  

V. M. K u z n e t s o v  and M.  M.  Kuzne t so v  UDC 553.5.011.55 

An analytical solution is obtained for the problem of acceleration of a body in a closed tube filled 
with a detonating mixture of gases. It is assumed that the body enters the tube with a certain 
initial velocity sufficient for burning initiation in an annular space between the body and tube 
surfaces. The effect of the mixture parameters, the shape and mass of the body, and the integral 
dissipation of the total momentum and enthalpy of the flow on the finite values of the velocity 
and the acceleration length is analyzed. 

1. In a number of recent studies [1, 2], it was proposed to use the principle of combustion, including 
detonation combustion, for acceleration of bodies. Detonation combustion has been assumed to occur in 
the annular space between the body surface and the internal surface of the guiding tube, which is completely 
filled with a detonating mixture of hydrogen- or hydrocarbon fuel-based gases. Experimental data on subsonic 
acceleration of bodies of moderate mass were presented in [1], and the results of numerical simulation of various 
regimes of supersonic and subsonic combustion were described in [2]. The present paper offers an analytical 
analysis aimed at determining the basic parameters which affect acceleration. In addition, the criteria of 
determination of the velocities and lengths of acceleration are obtained depending on the shape and mass of 
the accelerated bodies, the mixture parameters, etc. 

We consider the principal flow pattern (Fig. 1). A body of mass m and mid-sectional area Sb, which 
has the initial velocity V~, enters a cylindrical tube of cross-sectional area S, which is filled with a combustible 
mixture. The mixture detonates behind a system of oblique shock waves between the tube wall and the body 
surface. As a result of energy production, the gas accelerates to velocity u and acquires a useful momentum. 
To determine u, it is necessary to solve a number of gas-dynamic problems in the regions located between 
cross sections 1-4, taking into account energy production in combustion region II. 

The following parameters are assumed to be prescribed: the velocity of combustion products u, the 
density of the mixture p, the mid-sectionM area of the body Sb, the cross-sectional area of the tube S (S ~ Sb), 
and the drag coefficient of the body Cz (Cz -~ 0.1). 

The equation of motion for a body moving in the channel of an accelerator can be written as follows: 

dV 
= auV - (a + k)V 2. (1.1) 

dt 

Here a = pS/m,  k = CzpSb/2m is the ballistic coefficient, m is the mass of the body (it was assumed in 
calculations that a ~ 0.2 m -1 for the pressure p = 100 atm, S = 0.4 m 2, and m = 100 kg). 

The solution of Eq. (1.1) is 

V=a+----~ 1 -  1 (a-~k)l~ e x p ( - a u t )  

It follows from this equation that  the drag of the body for small values of 6'z and close values of S and Su 
(k << a) has a small effect on the final velocity of acceleration, which depends strongly on the velocity of 
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combustion products u and the  external pressure p (or the density p) (Fig. 2a). For the path L covered by 
the body, the solution is 

ou S [1 -(i - oul(o + k)v0) exp(-aut)] t +---s t~ + ! In j. (1.2) L 

It follows from (1.2) that the finite velocity of acceleration should be chosen based on a prior prescribed length 
of the tube L, which is l imited by its weight and dimensions (Fig. 2b). 

We rewrite Eq. (1.1) as follows: 

dV 
= au  - (a  + k ) V .  

dz 
Its solution can be represented in the following form: 

a u  - (a  + k)Vo 
= exp [(a + k)x]. (1.3) 

au  - (a  + k ) Y  

If V = Vf, where I~ is the finite velocity, i.e., the velocity of the accelerated body at the end of the tube, where 
z = L = xp (zp is the length of acceleration), it follows from solution (1.3) that ,  for given values of u, V0, and 
I,~, there exists a family of bodies corresponding to a fixed value of the parameter  pSxp /m,  from which we 
can determine either the length of acceleration from known p, S, and m or the mass m, which corresponds 
to a given value of zp. The  corresponding dependence is plotted in Fig. 3. The solution obtained extends the 
domain of similarity described in [1]: it is valid for all k, including k = 0. 

Computat ions in [1] showed that ,  for a fixed acceleration of a body in a mixture of combustibles with 
prescribed concentrations, the ratio of the scale of various bodies and the size of the tube is the cubic root 
of the mass of the  body. In particular, this follows from the form of the parameter  p S x p / m  for bodies whose 
shape is close to a sphere, i.e., when m ,,~ A R  3 and Sb ~ B R  2 (A and B = const). The  length of acceleration 
xp is inversely proportional to the  density of the mixture p, and the mass of the mixture is directly proportional 
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to the mass of the body [1], which also follows from the relationship pSzp/rn = const. 
However, more detailed information can be gained from the solution (1.3). We can perform a scale 

recalculation for arbitrary shapes and masses of bodies, taking into account the initial and finite velocities of 
acceleration, the real drag of the bodies, and the values of the parameters that characterize the mixture. 

The drag of slender pointed bodies (k << 1) has hardly any effect on the values of the finite velocity of 
their acceleration if their shape does not change because of ablation. 

2. In the more correct consideration, the flow velocity u behind the accelerated body should be 
determined from the system of integral balance of the mass, momentum, and energy fluxes, which takes 
into account the overall losses because of friction, heat transfer, and wave drag. The equation of motion of 
the body for a gas flow in cross sections 1 and 4 (see Fig. 1) takes the following form: 

dV 
m -~- ---- T -- p4S4(1 -I- ~4M~) - pIS,(1 + 7,M~). (2.1) 

Here p/, S/, 7{, and M{ are the static pressure, the area, the ratio of the specific heats Cv/Cv , and the Mach 
number in cross sections i -- 1, 2, 3, and 4, respectively (5'I -- $4). 

Similarly, by virtue of the continuity equation and the law of energy conservation written for the same 
cross sections, we obtain 

Pl M1 S1 / h4 ('74 - I) 7x 
1; (2.2) 

P4 M4 $4 hi (71 - -  1) 74 

h4 (1-~q)( l  +(71-1)M21/2)+(q+~qh~)hl  1 
h'-~ = 1 + (74 - 1)M42/2 (2.3) 

Here hi and h4 are the static enthalpies of the flow of the combustible mixture in cross sections 1 and 4, hw is 
the enthalpy on the body surface, q is the specific heat of fuel burning [31, 6 = Q,,/SIp1V~(hl + V~2/2 - h,,), 
ffq is the dimensionless heat-transfer coefficient proportional to the Stanton number, Q,,, is the integral heat 
flux to the body surface, and M~ = Vi2/(7i - 1)hi. 

We introduce a dimensionless distance ~ = z/lp, where Ip is the reference scale which has the physical 
meaning of the length on which the increment of the velocity of the body I~ is equal to the local speed of 
sound, l v = m(71 - 1)hl/p~S1. We pass to the variable ~ in Eq. (2.1) and then integrate it with allowance for 
the conservation laws (2.2) and (2.3). 

We obtain 

"dM~=(271M~)r14d~ 1 - ( q + ( 7 1 - 1 ) M ~  1 71~I~' . (2.4) 

Here 01 = [q - (q(hl - h,o)lh'~ 1 and  74 - (1 + 7~'1M~'2)[1 + 2('r4 - 1)- 'M~'21-1/2 .  
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The coefficient q4 depends little on the "tail" Mach number M4 within the range of 1 ~< M4 < ~ .  For 
example, for 74 = 1.3 the coefficient 7/4 falls within the range 0.64 < 774 < 1 for all values of M4 within tim 
cited range and almost coincides with unity for M4 >> 1. 

The condition r/4 = const being satisfied, it follows from Eq. (2.4) that  there is a universal dependence 
[to within the accuracy of o(M~-2)] of the dimensionless length ~ on the Mach number  M4, the initial conditions, 
the coefficient of dissipation of the total energy, and the Mach number  of the Chapman-Jougue t  detonation 
which characterizes the combustible mixture: 

( 1 +  Z ) 7 1 , = ( 1 -  Z) - l { l n  [ 1 - ( 1 -  Z ) Y ~  [ 1 - ( 1 -  Z ) Y 1 _ ~ ] } +  ln-~-0. (2.5) 

Here I~ = mi + ~ i  + 1, mi = ZqMi/Mo, Z = Zqrl~ , Zq = 1 - ~q, M] = 2(1 + 01)(~' 1 - -  1) -1, the subscript 
i = 0 refers to the flow in the initial cross section of the tube,  and the subscript i = 1 refers to the flow in the 
cross section of the tube in front of the body which moves together with it. 

We note tha t  the solution (2.5) is valid for combustible mixtures of an arbitrary composition. It is of 
interest that  dissipative and wave losses of the kinetic energy, which depend on several parameters (Stanton 
number, drag coefficient, etc.), are determined here by only one universal "coefficient of losses" Z. 

The solution (2.5) can be writ ten in functional form: 

x lp = f ( z q M ~  Z M1,Z'~ 
--  M--o; q M--o0" /" (2.6) 

It follows from solution (2.6) that  equal values of the reduced lengths ~ can be obtained in combustible 
mixtures of an arbitrary composition on condition that  the values of the dimensionless parameters ZqMo/Mo, 
ZqM1/Mo, and Z coincide. 

For small values of dissipative losses, i.e., for Z ~ 1, relation (2.5) becomes substantially simpler: 

271~ = Y~ + i,,2 + In Y1 (2.7) 
- - T - -  V0" 

It follows from (2.5) and (2.7) that ,  for '14 ~ 1 and (1 - Z) << 1, a great number  of the reference lengths 
[M1/M0]m~ , which is reached when the right-hand side of Eq. Ip are needed to approach the  limiting value 2 2 

(2.4) vanishes: 

M2I max Zq(i - Z) 2" (2.8) 

In the case of large dissipative losses of the kinetic energy, i.e., for values of Z greatly different from 
unity, the resulting thrust  force T decreases rapidly over several lengths lp. 

It follows from Eq. (2.8) tha t  the maximum value of the relative Mach number  of body acceleration 
M1/M0 depends greatly on the  extent  to which the coefficient of losses Z differs from unity. The  values of Z, 
in turn, are primarily determined by heat-transfer losses (i.e., by the value of Zq) since r/4 ~ 1. 

We note that ,  for T = 0 and eq = Cz = 0, relations (2.1)-(2-3) completely coincide with the relations 
for the normal shock wave. Thus,  the problem of determination of the limiting values Ml,max is similar to a 
s tudy of the normal shock wave with heat release, and the problem of determination of the velocity of body 
acceleration in an arbitrary cross section of the channel x is similar to a study of the structure of the normal 
shock wave. 

To find the limits of existence of a steady-state quasi-one-dimensional flow in a tube with an accelerated 
body, a complete system of the balance of mass, momentum,  and energy fluxes in regions I - IV was analyzed. 
For the Mach number  M3, before the flow rotates on the tail part of the body, we obtain 

73M32 = 3'3 + ~/732 -- (7~ -- 1)(Zq + m2)C~ 2 (2.9) 

1 - ~/7a2 - ('),~ - 1)(Zq + ml2)Cg 2" 

Here the values of Ca = 1 - (1 - $3/$4)Cz/2 + ($3/$4)71M 2 and Zq are set without taking into account the 
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losses because of heat transfer and friction in the tail section of region IV. 
It follows from (2.9) that there is a characteristic value of the Mach number Mj that corresponds to 

the Chapman-Jouguet detonation. Below this value, a steady-state quasi-one-dimensional flow in a channel 
with an accelerated body is impossible. The value of the Mach number of thermal choking Mj is reached when 
the radicand in formula (2.9) vanishes: 

M] = ('Y~- 1)M2 
2 2 ( 2 . 1 0 )  zq + "r3 - 

Based on an analysis of the conservation laws on the "diffuser" forebody (in regions I and If) (see 
Fig. l), we can obtain the minimum "critical" value of the Mach number M2,min which ensures the starting 
of the accelerator diffuser. It is found from the relation 

2 2(I -~- ~'l I ) -- S2/SI 
~]M2'mia = I - (I - $2/S,)C~/2" (2.11) 

Without analysis of the conservation laws, it is impossible to obtain relationships of the type (2.10) 
and (2.11). In particular, Knowlen and Hertzberg [1; 2, p. 175] faced this problem. They showed that the 
simplified "entropy-free" model "does not allow the calculation of the lower limit of the accelerator and the 
minimum Mach number M1 at which the diffuser can be started." 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 
00757). 
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